EGU Twitter page

This week, the HEPEX traveling circus will descend on Vienna, home of the annual convention of the European Geosciences Union. HEPEX-ers will be tweeting their way through the conference – and these Tweets will be assembled in below Twitter stream. Feel free to add your thoughts, ideas and observations – just make sure they’re summarized in 160 characters max – and don’t forget to include the #hepex tag!

Posted in Unclassified | Leave a comment

What will happen next week at EGU 2017 in hydrological forecasting?

The EGU 2017 Annual General Assembly will take place next week, from 23–28 April 2017 in Vienna. Once again, researchers, professors, early career scientists and practitioners interested in any of the fields covered by geosciences, including hydrological sciences, atmospheric sciences and natural hazards, will be together to present and discuss their work.

The meeting program includes about 1,000 sessions and over 17,500 abstracts, of which over 200 contributions will be presented in 8 scientific and operational-focused sessions organized by the sub-division on Hydrological Forecasting.

Here you can find a list of what will be presented in relation to hydrological forecasting and of some main events to guide you through the week in Vienna:

On the first day, after the first morning coffee break, join us at the flash floods session, which will start with 6 oral presentations at 10:30 and will display 21 posters at the end of the day in Hall A:

  • 10:30–12:00 / Room 2.31: Flash floods and associated hydro-geomorphic processes – Learn more about flash flood characterization with an X-Band weather radar in the Eastern Mediterranean region, the geomorphic response associated to four large floods in Northern Italy, flash flood risk assessment in France and Germany, or flash flood forecasting and early warning systems over Europe.
  • POSTER SESSION 17:30–19:00 / Hall A: Come to discuss with poster presenters and meet colleagues of the Hydrological Forecasting sub-division.

On the second day, we do not have specific sessions organized by the Hydrological Forecasting sub-division, but several other sub-divisions are offering a rich program. Just as examples, see, for instance:

This is the day of our operational forecasting and warning system PICO session (as already mentioned in a previous blog post by Mike Cranston).

  • 08:30–12:00 / PICO Spot A: Operational forecasting and warning systems for natural hazards – This year, we have 28 interactive presentations at PICO screens. Several applications will be presented and we will also have the “traditional” game presentation, which, this year, was prepared by Louise Arnal et al.: Pathways to designing and running an operational flood forecasting system: an adventure game. Just come and try it yourself!
NEW!!   Short course on Hydrological Forecasting

It is co-organized by HEPEX and the Early Career Scientists (ECS), convened by Shaun Harrigan. The course will be given by Marie-Amélie Boucher and Jan Verkade. Check the blog post recently published for more details. Attendance is open to everybody and will be on the basis of first come, first served!

Wed, 26 Apr, 17:30–20:00 at Room -2.91

A long day with several Hydrological Forecasting sessions is waiting for you on Thursday:

The Division meeting for Hydrological Sciences (HS) will be convened by Elena Toth, on Thu, 27 Apr, 12:15–13:15 / Room B. It is the opportunity  to learn more about the way sessions related to Hydrological Sciences  are organized at the EGU Assembly. You’re all welcome!

Scientific sessions continue in the afternoon:

  • POSTER SESSION 17:30–19:00, will be mainly in Hall A, but also in Hall X4 (post-processing) and Hall X3 (coupled systems) for the co-organized sessions above.
  • Another tradition in Vienna: the HEPEX social gathering @ EGU. As in last year, it will be co-organized with partners of the IMPREX H2020 project. It will take place on Thursday evening at 8pm (restaurant will be confirmed at EGU). Since reservations have to be made in advance, and places are limited, please, contact Louise Arnal or Rebecca Emerton before Monday 24 April if you want to join us.

Last day of the EGU Assembly and again a full day of presentations:

  • 08:30–12:00 / Room 2.95: From sub-seasonal forecasting to climate projections: predicting hydrologic extremes and servicing water managers, with presentations on society vulnerability to extremes and the use of seasonal forecasts to improve water resources management.
The  meeting of the Sub-Division on Hydrological Forecasting will be convened by MH Ramos, on Fri, 28 Apr, 12:15–13:15 / Room 2.83
It is open to everybody. Come and join us, notably if you want to meet colleagues or get more involved in the organization of sessions and short courses related to hydrological forecasting at EGU in 2018.

Scientific sessions continue in the afternoon:

  • 13:30–17:00 / Room 2.95: Ensemble hydro-meteorological forecasting. Our traditional HEPEX session will be opened by Andy Wood’s talk on “Over-The-Loop ensemble streamflow forecasting in US watersheds”. It will be followed by talks on ensemble calibration, sensitivity analysis, ensemble nowcasting, and the use of satellites and tweets in flood disaster management. After a coffee break, you will have the opportunity to learn more about two projects, EDgE and GloFAS-Seasonal, and on recent progress on the skill of seasonal hydrological forecasts.

POSTER SESSION 17:30–19:00 in Hall A. NOTE: If you played last year’s game on Weighing costs and losses with Micha Werner (or also if you didn’t), you may be curious to learn more about the results that he will show in his poster. Come to the poster Hall A to get information and exchange ideas on the topic.

As you can see there is plenty to see and do in Vienna. See you there!

Posted in activities, announcements-events, meetings | Leave a comment

Understanding public responses to flood warnings

Contributed by Michael Cranston, RAB Consultants, Scotland

The Winter 2015 floods in the United Kingdom and Ireland led to severe and widespread flooding for many communities.  The introduction of storm naming by the Met Office and Met Eireann the same year has since led to the names of Desmond, Frank and Eva becoming synonymous with the flooding that was experienced during that winter. Storm Desmond (5 December) brought major flooding to Cumbria and southern Scotland with a new 24-hour UK rainfall record of 341.4 mm being recorded at Honister Pass in Cumbria. Storm Eva (24 December) brought further flooding to parts of northern England, whilst Storm Frank (29/30 December) brought severe damage to communities in Newton Stewart and Ballater.

Severe flooding from the River Dee in Ballater (Source: Evening Express)

This series of major floods led to a UK Government review on National Flood Resilience which is summarised by Louise Arnal in this HEPEX article on what we should learn from the winter 2015 floods.  However, the UK has seen significant investment in improved flood forecasting in the 10 years post-Pitt and this account of the short and medium range forecasts ahead of Storm Frank highlights that flood forecasting tools and models are starting to support much earlier warning of significant flooding impacts.

Flood alerts and warnings in Scotland are now sent to over 25,000 members of the public since the Scottish Environment Protection Agency (SEPA) introduced the new service in 2011.  During the Winter floods, SEPA’s service saw 300,000 individual messages being issued to alert and warn of potential flooding.  Following this, SEPA, through the Centre of Expertise for Waters (CREW), subsequently commissioned research to understand public responses to warnings and to assess how effective the flood warning service is for reducing the impacts of flooding.

A research team at the School of Social Sciences the University of Dundee were commissioned to undertake this project in 2016. The primary method of collating information on public response was through a web-based questionnaire of registered customers of the service.  This survey was designed to assess associations between multiple customer characteristics, including location, type of message received, prior experience of flooding, risk awareness, and demographics.  1341 customers provided a response to the survey invitation, and crucially 1290 of those provided a postcode to allow for geocoding of their responses.  The information provided through the questionnaire response was further enhanced through several community group meetings held by the research team.

The research to understand public responses to flood warnings involved consultation with members of the public and community groups across Scotland, including this taken in the Speyside

The research results are starting to deliver some interesting findings around the public response to flood warnings.  It is clear from the results that the service is valued by those at risk of flooding with 66% of the respondents satisfied with the warnings they are provided.  Many take mitigating actions, of note: 62% of those who said flooding of land was important to them subsequently moved livestock on receipt of a warning; 71% of those that stated they had bought these measures, deployed property level protection; and 42% of all respondents at some time removed vehicles on the receipt of a warning.

Less effective elements of the service focus on those members of the public that are not engaged with the service, possibly the ‘flood unaware’ and elements that are not locally specific enough to encourage action.  For example, the least content of customers are those that do not receive regular messages. Also, those who receive regional Flood Alerts are less likely to act given the lack of locally specific information, which is typically misunderstood by members of the public as a part of the service that they consider should offer more local relevant flooding information. This theme was one of several that were explored further during the community workshops with some referring to the need for local reference points in warnings, a discussion which featured as part of the flood memory and historical references HEPEX article last year.

Work continues to conclude this research which will be published by CREW this summer with recommendations for future development of the flood warning service.  However, a summary of the results will be provided at the forthcoming EGU General Assembly as a PICO presentation as part of the Hydrological Sciences Division, in co-organization with the Natural Hazards Division, on a session of the Hydrological Forecasting Sub-Division on operational forecasting and warning for natural hazards.

This work will be presented as part of the PICO session on operational forecasting and warning systems for natural hazards: PICO spot A, Wednesday 26th April between 08:30 and 12:00 (see programme here)

This work would not have been possible without the efforts of the Dundee University research team of Dr. Alistair Geddes, Dr. Andrew Black and Alice Ambler and the guidance of SEPA’s Project Manager Cordelia Menmuir.

Michael Cranston is an Honorary Research Fellow with the School of Social Sciences at Dundee University and a consultant in flood early warning with RAB Consultants in Scotland.  Prior to this he was an operational flood forecaster and Manager of the Flood Forecasting and Warning team at SEPA.

Posted in decision making, floods, forecast communication, forecast users, operational systems | Leave a comment

A short course on Hydrological Forecasting: interview with Marie-Amélie Boucher and Jan Verkade

Contributed by Maria-Helena Ramos (Irstea) and Shaun Harrigan (CEH)

This year Hepex is joining the Young Hydrologic Society (YHS) to offer a short course on hydrological forecasting during the EGU General Assembly in Vienna.

Shaun Harrigan (CEH), representative of the YHS, and I have been excited about this first experience and invite you to check the short description of the course’s content.

The course will take place on Wednesday 26 April, from 17:30-20:00, in room -2.91 (Brown Level -2 – Basement floor). It will be given by two active members of the Hepex community:

Marie-Amélie Boucher is a professor at the University of Quebec at Chicoutimi (UQAC). She has written several Hepex blog posts as a columnist in 2015 and a general contributor: “In Canada, I teach disciplines such as hydrology, hydraulics and fluid mechanics. My main research interests revolve mostly around ensemble forecasting and include multi-model forecasting, data assimilation, pre and post-processing and assessing the socio-economic value of forecasts.”

Jan Verkade is a researcher in hydrology as well as a developer of flood forecasting systems at Deltares and a flood forecaster for the Rijkswaterstaat River Forecasting Service in the The Netherlands. He is one of the creators of the Hepex Portal in 2013 and since then has been helping to manage it: “My research interests focus on hydrologic forecast, warning and response systems. I have ample experience in the development of operational, real-time hydrological forecasting systems and in applications of research findings in projects around the world. I have also aged matured grown up greyed considerably since this photo was taken.”

Can you tell us a little about what you are preparing for this course in Vienna?

JV: There will be some focus on the elements that distinguish realtime forecasting from modeling, including realtime data feeds, management of model states and state updating runs, data assimilation, primary and secondary data validation and forecast verification. Also, we will not strictly limit ourselves to “forecasting” and will give some attention to the use of forecasts: communication thereof, use in decision making, etc.

MAB: I won’t reveal too much: people have to come to the course to know its content in greater detail! However, I can tell you that we are tailoring the course to people who already have some background in hydrological modelling. We will assume that participants already know how to set up a model (any model) that runs in continuous mode, for instance, and that they have already done or worked with model simulations. Obviously, those who read the HEPEX blog are probably more than okay with that! So, this course is for anyone with some background in hydrology, and a participant does not need to be a forecaster to join us.

Why should an Early Career Scientist (or even an established researcher or flood forecaster) take the opportunity to attend this course?

MAB: Simply because hydrological forecasting is valuable for society for multiple reasons (see this and this and that, for instance), and because it is fun!

JV: Realtime forecasting is a discipline in itself but, despite its obvious relevance to society, receives relatively little attention in university curriculae. Here’s one of very few opportunities to learn more about it!

And one final question: what was your worst experience ever with hydrological forecasting (model, data, real-time forecasting…)?

JV: Over the years I have come across many issues related to pretty much all aspects of realtime forecasting. Many pertain to automated data feeds (precipitation gauges, numerical weather predictions) where something was wrong but, for one reason or another, the issue escaped detection by validation procedures. Biblical floods resulted – on screen, in any case. Others related to physical processes not included in the numerical models: a particular rain-on-snow event springs to mind. Yet others related to the handling of ‘states’. There was always lots of opportunity to learn!

MAB: Well, nothing dramatic, really! I crave the collaboration with operational forecasters and sometimes I hear about some bad experiences from them, but they are not my own! My research is always performed in hindcast mode (I’m a huge fan of the TIGGE data portal, for instance!), which probable makes things easier. Still, I definitively have a “least preferred hydrological model” when running my forecasting experiments. I guess we all have one, depending on personal experiences. From my experience, the implementation of this particular model requires disproportionate efforts considering the quality of the results it gives (compared, for instance, to simpler models). It also has those obscure error messages. I especially dislike the one that simply says that “[model’s name] is going to close now”. But I still have to work with it sometimes (I won’t detail why…), so maybe I’ll eventually learn one day to appreciate it (or to improve it!).

Thank you, Marie-Amélie and Jan, for your answers and your availability to prepare the EGU course!

For those willing to attend the course, you just need to be in Vienna for the EGU and show up in room -2.91 (Brown Level -2 – Basement floor) on Wed 26 April. Attendance will be on the basis of first come, first served!

See you there!

Posted in announcements-events, early-career scientists, forecast techniques, interviews | 2 Comments

Breaking news: Hydrology is the oldest of all scientific disciplines

Posted on April 1, 2017 by Dr Professor McFools

The general belief until recently has been that hydrology is a very young discipline — i. e. Homo Hydro is a quite young scientific species — but it is time to debunk this myth. Scientists from the Grand Old Duke University revealed in this issue of Environment (impact factor: highish) that they had found fossils believed to be from a previously unknown early hydrological model ancestor — one that could have used simplified functions and may have even figured out how to make certain primitive predictions without ensemble members.

Scientists believe that mysterious episodes of knowledge exchange between otherwise isolated groups of our Homo hydro (sub species modellus) ancestors may have paved the way for parameter similarity evolution. The recent discovery also suggests that outbursts of multi-objective calibration and Bayesian uncertainty post-processing, which might have (eventually) greatly enhanced model performance, might also have killed hydrologic physics and broken the links between weather prediction and water resources management.

Figure 1. Reconstruction of what is believed to be the first ever recorded hydrological model

At this point we cannot exclude the theory that the homo hydro also paired with the homo mathematicus. This combination seem to be better suited to survive in a world with growing publish-or-perish pressure, but may also be the reason why the ancient wisdom was lost for many centuries in what can been named “the great drought”. During this period, only very spurious attempts were made to explain the physical processes behind the hydrological cycle (Figure 1), and for very long only the Nilometer was thought of as the earliest sign of hydrological predictions.

Evidence that calibrated specimens of hydrological models have spread even to the most remote areas of our planet like dandelions across a lawn had already been found in a recent research carried out by the team of Prof. McFools: “My feeling is that the application-focused purposes of an ancient community on hydrologic ensemble prediction have been the substrate for the birth of real-time techniques that could only be supported by these ‘physics-killer’ types of models“, the reconstitution of which is believed to depict the prototypical hydrological model of the early years.

It’s an excellent case of a transitional forecasting approach discovery from a critical time period in the evolution of natural hazard risk reduction“, say scientists, who are now also confident that what seems to have been called ‘the routing function’ can now be coupled to the real world of weather predictions and re-establish the long-time missing links.  This should pave the way for refocusing on very applied tasks such as reservoir management.


Figure 2. Inspiration for single reservoir model and benchmark for hydropower management forecasting

Furthermore, the community realizes it must go back to fundamental laws and theoretical bases of hydrology, including a renewed commitment to rigorous and methodical development and testing.


Figure 3. How real world (right) inspires and deliver proofs of model assumptions (left)

Our aim is to put physics back in hydrological forecasting. The fact that it has features that so clearly ally with our numerical (physically based) models helps us narrow the transition of the large-scale atmospheric and land-surface conditions, and suggests that the transition itself can be relatively approached by much simpler functions than what the current hydrological ensemble prediction community is trying to convince us that should be done” said D. McFools Jr, a graduate student member of the team that discovered the modelling remains.

A great deal is at stake here” — he added. “I’ll be presenting my recent research findings in the next HEPEX workshop in Melbourne and I expect that the HEPEX community will praise my work and finally recognize the efforts my family has been doing for more than three years now (see here, here, and here ).

Reference: McFools Jr, D., 2017. Has the Missing Link Been Found? International Journal of Creative Alternative Facts, 4 (17), pages 456-456.5

Posted in April fools! | Leave a comment

How suitable is quantile mapping for post-processing GCM precipitation forecasts?

Contributed by QJ Wang, University of Melbourne*

Poster session during the HEPEX Workshop at SMHI in Norrköping, Sweden.

Back in September 2015 at the highly successful HEPEX Seasonal Hydrological Forecasting Workshop at SMHI in Norrkoping, Sweden, I heard a number of presentations and saw posters on the use of quantile mapping for post-processing or downscaling GCM precipitation forecasts.

While quantile mapping was well known to be highly effective in bias correction, I was concerned that some of its limitations might not have been apparent to some people.

After discussing with Andy Wood and Maria-Helena Ramos at the workshop, I left the workshop with the idea of doing a piece of work to demonstrate both the effectiveness and limitations of the quantile mapping method.

Back in Melbourne, my colleagues at CSIRO, led by Tony Zhao and James Bennett, enthusiastically took on the research task. With inputs also from Andy and Helena, we recently published the results in Journal of Climate. The paper is simply titled: How suitable is quantile mapping for post-processing GCM precipitation forecasts? Read the abstract

In brief, quantile mapping is shown, as previously known, to be highly effective for bias correction. However, if there is still an ensemble spread reliability problem after bias correction, quantile mapping cannot fix up the problem. Think of a limiting case. The ensemble members are all identical and therefore have no spread and we know the forecast is not perfect. Applying quantile mapping will not introduce even an ounce of spread to the ensemble.

When past forecasts are not correlated with observations in any way for a particular situation, we should not be insisting on using the erroneous forecasts, and should instead revert to climatology forecasts. Take this point further with another limiting case. Past forecasts are found to be negatively correlated with observations for a particular situation. Applying quantile mapping cannot reverse or remove the negative correlation, as the order of values after quantile mapping does not change.

The good news is that there are alternatives to the quantile mapping method. In the paper, we demonstrated that the Bayesian joint probability method was effective in achieving bias correction, making forecast ensemble spread reliable, and steering the forecasts to climatology when the raw forecasts had no underlying skill.

If you are interested in the topic, take a look at the paper here. The authors would love to hear your thoughts.

Finally, may I use this opportunity to let you know that I recently made a career change by joining the University of Melbourne as a professor of hydrological forecasting. Leaving the fantastic water forecasting team in CSIRO that I built and loved was one of the most difficult decisions I had to make. I look forward to continuing to work with my colleagues at CSIRO and indeed the HEPEX community to advance research and practice of ensemble hydrological forecasting. My new email contact is

* with inputs from Tony Zhao, James Bennett, Andrew Schepen, Andy Wood, David Robertson, and Maria-Helena Ramos, after several discussions in the past months.

Posted in postprocessing, seasonal prediction | 2 Comments

Developing and running an ensemble prediction system – Interview with Jutta Thielen-del Pozo

Posted by Maria-Helena Ramos (IRSTEA)

I met Jutta Thielen-del Pozo in 2005, when I went to the JRC in Ispra, Italy, to take a post-doctoral position. I had been doing research in hydrology for some time, but I didn’t know anything about ensemble predictions when I joined her team. They were developing the European Flood Awareness System (EFAS) and the first tests using weather ensemble predictions to issue EFAS warnings were just starting. I was fortunate enough to count with Jutta’s patience and amiability to get involved in the research being done within EFAS and introduced to the HEPEX community.

This is Jutta, during the Hepex workshop in Toulouse in 2009

Jutta is now Head of the Scientific Development Unit at the European Commission since July 2016, a challenging position as the units aims at stimulating novel and trans-displinary research within the JRC through a Centre of Advanced Studies, Exploratory Research, and novel instruments such as Science and Art and Collaborative Doctoral  Partnerships between JRC and higher education institutions.

Her new position has in no way reduced her historic enthusiasm for HEPEX and its community. She acted as a HEPEX co-chair from 2007 to 2012, and much of what this initiative is today is thanks to her pushing things forward, and adding people and ideas to the group.

At the JRC, Jutta was the EFAS project leader for 10 years, from 2003-2012. She acquired a broad experience in designing and running an ensemble prediction system. Since many of us are also dealing with these issues, I have asked her some questions. Here are her answers.

MHR: In your opinion, what are the crucial choices one has to make when starting the design of an ensemble flood prediction system?

JT: First of all, I think it is crucial to understand what the system is supposed to deliver and what the expectations are. Is it a small watershed with typically flash floods where decision makers have little time to act or is it a larger river with a comparatively slower response time? Is it an urban watershed? Is the watershed entirely within one’s own administrative boundaries or are others involved? Is the decision making pathway, from information to action in case of floods, long or short? How are the vulnerability and the coping capacity of society in case of flooding?

Depending on these answers, the required lead times and acceptable accuracies of the forecasts can be determined, which, in return, will determine which input data are required and what type of models and forecasting system is most suitable. For example, for flash flood prone regions, radar data blended with nowcasting and short term forecasts will be essential, whereas for riverine flood prone areas it is rather medium-range to monthly forecasts that will be more useful.

However, I would say that although input data and process modelling are key elements for a successful ensemble flood forecasting system, equally important is a communication and training strategy, so that the results are properly communicated and understood at any point in the forecasting chain. Only then users will understand that uncertainties exist; that they are acceptable at longer lead times if at the same time they provide longer time to act; and that uncertainties can and will be reduce as the events draw nearer and more data becomes available. This is particularly true today with the plethora of data sources available, including satellite and social media.

Generally, the HEPEX community has shown that whatever type of flood, ensemble prediction systems (EPS) tend to provide longer warning times for the decision making and yield more robust results. EPS give forecasters and decision makers more time to take different preparedness actions, play through different scenarios and therefore allow both preparedness and response teams to act more decisively during the crisis.

MHR: And what are the main difficulties someone should expect when running an ensemble flood prediction system in real-time?

JT: Real time operational forecasting always puts enormous pressure on not having the process chain interrupted – and there can be manifold reasons for this. There are the technical issues on site to ensure a 24/24 business continuity (power supply, redundancy of the systems in case one or more systems fails, sufficient storage at any time of the processing chain, availability of nodes for processing…) I remember an incident of the early EFAS days when a process got into an endless loop because a simple line of code was accidently deleted, which then started filling the hard disk. That was a nightmare at the time!

Then there are software issues, e.g. in case of necessary updates not having been sufficiently tested and resulting in hiccups or termination of processes. One particular aspect of ensemble prediction systems is that it involves a lot of input and output data and, for different reasons, not all files or all ensemble members may be available.  Therefore the process chain must be able to cope with time delays, partial availability of data and files, without flawing the analysis and visualisation of files.

I think another important aspect is that, during a crisis, forecasters are often asked additional questions which then need to be answered under enormous time pressure. Therefore the system should be designed in a way that additional information and in depth analysis can be extracted at any time in an easy way without slowing down the actual forecasting capacity.

MHR: How do you see the future of HEPEX? Any topics we should focus on or new directions to consider?

JT: I think HEPEX has already taken a good direction by involving end users and different stakeholders from the beginning. Yet much of the HEPEX activity remains directed towards scientists, forecasters and civil protection. I think social media now opens up new doors to keep involving the public more directly in flood forecasting. Posting pictures while flooding is going on is an obvious way and already taking place, but possibly this could be even more integrated. There is always the prejudice that “the public don’t understand probabilities”, but perhaps it is time to put this to the test and use the outcome to the advantage of the ensemble prediction systems?

Although HEPEX is open to everybody it is not yet a full global community and mostly restricted to those scientists and end users that have the technical power to run large and complex models and data sets. Yet, flooding takes the biggest toll in those regions where such capabilities are not available. And we know that flooding disproportionally affects the poorer communities. I would therefore like to see HEPEX trying to involve also end-users and scientists from those regions where computing power is limited, and finding solutions to introduce the value of ensemble prediction there too in order to have a fairer distribution of warning information globally.

MHR: And a last question: what are your working challenges now as Head of the Scientific Development Unit at the JRC?

JT: Since my new unit targets Scientific Development in the JRC in general, it is not focused on a particular topic. Its aim is rather to become the incubator for new research not yet part of the JRC’s portfolio, to stimulate exploratory research and to use Art and Science to connect JRC scientists across the JRC and with society. Such programmes are really important – in fact, if you remember, EFAS and the ensemble prediction system benefited in 2005 from the exploratory research programme at the time.

This is exciting and challenging at the same time. In order to address the changes in sciences and changes in society, my unit fosters collaboration between natural science and technology with the social sciences and humanities. We will be involving experts at the science-policy interface. This is opening up new ways of thinking and challenges us to think across disciplines. In this sense, I hope that with my work I can continue to contribute to HEPEX and stimulate new research questions.

 Thank you, Jutta, for your time and contribution!

Posted in floods, interviews, operational systems, social participation | Leave a comment

The 15th session of the WMO’s Commission for Hydrology (CHy-15)

Contributed by Sinéad Duffy & Oliver Nicholson

The Commission for Hydrology (CHy) of the World Meteorological Organisation (WMO) recently held its fifteenth session in Rome from 7th to 13th December 2016. Oliver Nicholson and I were the Irish representatives and attended the session on Dec 8th & 9th. This was the first Irish attendance at a CHy session since 1980.

Oliver works in the Office of Public Works (OPW), the lead Irish state body for coordination and implementation of Government policy and the EU Directive for flood risk management. I work in Met Éireann, the national meteorological service of Ireland. Our two organisations are currently collaborating on the establishment of a National Flood Forecasting and Warning Service for Ireland.

Brief history of CHy

CHy held its first session in Washington DC in 1961 and since then has met every four years. Sessions have mostly been hosted in Geneva but they have also travelled to Abuja, Buenos Aires, Koblenz, Madrid, Ottawa and Warsaw.

The Commission for Hydrology has not always been known as such. The final report of the first CHy session refers to it as the ‘Commission for Hydrological Meteorology’. The reports of the following two sessions in 1964 and 1968 note the title as the ‘Commission for Hydrometeorology’. It was not until the fourth session in Geneva in 1972 that the name ‘Commission for Hydrology’ was settled upon [1].

The Women’s Leadership in Hydrology Workshop

Prior to CHy-15 session kick-off, there was a two-day Women’s Leadership in Hydrology workshop, which was attended by 30 female hydrologists from 30 countries on 5 continents. Its aim was to empower women in WMO governance structures, as currently only 20% on average of those holding governance roles in the organisation are female.

WMO’s Deputy Secretary-General, Elena Manaenkova’s concluding remarks encouraged participants to be leaders themselves and to promote the study of meteorology and hydrology to young females. She urged all attending to be role models and mentors to young female professionals.

Participants of the Women’s Leadership in Hydrology workshop (photo: WMO)

CHy15 proceedings

On day one of CHy-15 committees were established, the Commission President, Advisory Working Group Members and the Secretary-General presented reports, and sessions were held on regional activities related to the Hydrology and Water Resources Programme and decisions of Congress and the Executive Council relevant to hydrology and water resources management.

Elections were held on the morning of day two, the 8th December. Dr Harry F. Lins (USA) was re-elected as President of the Commission without opposition, and Dr Silvano Pecora (Italy) was elected as Vice-President, replacing Dr Zhiyu Liu (China).

Discussions took place on the Quality Management Framework – Hydrology (QMF-H) and what is known as Project X, a project for the assessment of the performance of flow measurement instruments and techniques. The Commission has developed a dedicated QMF-H website, and a checklist with the basic steps required to set up a credible Quality Management System to ISO level with case studies from the Canadian, Czech and New Zealand Hydrological Service.

A World Bank representative presented on hydrological services in developing countries. Hydrological information and services are vital for sustainable management of water resources and flood/drought disaster mitigation, and NHSs are important as the main source of this information but the NHSs’ roles are not widely recognised in their own countries.

Resources are inadequate and sometimes decreasing for provision of these services. Case studies of Cameroon, Madagascar, Senegal, St. Lucia, Tanzania and Uruguay are now underway to review the status of hydrological information and services systems in the developing world.

The development of WHOS, the WMO Hydrological Observing System, which is the CHy’s contribution to the WMO Integrated Global Observing System (WIGOS) was presented. It is planned that initial implementation of a fully compliant framework for WMO Executive Council approval will happen in June 2018.

Day three kicked off with presentations on the Flood Forecasting Initiative (FFI). New functionality of the Flash Flood Guidance System includes elements such as urban flash flood forecasting, multiple mesoscale model ingestion, satellite inundation mapping and surface soil moisture observations to correct the system’s soil moisture.

Actions were proposed for the FFI Advisory Group:

  • development of a list of best practices for End-to-End Early Warning System for flood forecasting;
  • development of a FFI Implementation Strategy based on projects, training programmes, guidance materials, etc. to enhance national capabilities, and to ensure that all major demonstration projects such as the Coastal Inundation Forecasting Demonstration Project and the Severe Weather Forecasting Demonstration Project include best practices for flood forecasting.

The Manual on Flood Risk Mapping was in the review phase at the time of the CHy-15 session.

The Open Panel of Commission for Hydrology Experts (OPACHE) is the reservoir of scientific and technical expertise that CHy uses to fulfil its mission activities. These activities include:

  • participating in specialized hydrologic, hydrometric, and water resources studies;
  • serving on expert advisory teams;
  • contributing to manuals, guidance material, and technical reports; and
  • participating in workshops and expert meetings.

Recognized specialists from National Hydrological Services, research institutes, water resources management agencies, and academia are eligible to become OPACHE members and any experts wishing to participate in WMO activities were asked to apply.

Italy proposed the setting up of a Global Data-Processing and Forecast System (GDPFS). This would use a Global High Resolution Model (1km grid size). The models would be developed locally, but would be available for those from other countries to see.

The UK presented a proposal to develop a pilot WMO Global Hydrological Status and Outlook System to integrate current capabilities and tools in ground-based data; satellite data such as precipitation, soil moisture, etc.; numerical weather prediction models; and hydrological models.

An open-source Dynamic Water Resources Assessment Tool was outlined in a presentation by a member of the Republic of Korea delegation. The Japanese delegation noted that they have developed a flood forecasting system called IFAS (Integrated Flood Analysis System) and AutoIFAS, which will allow local engineers to use global satellite data, together with locally measured ground observations, to simulate local hydrological processes [2]. These models are used in Pakistan and Thailand, as well as other Asian countries.

Drought management, Hydrological and climate services and Capacity Building in Hydrology and Water Resource Management also were covered on day three. Documentation and presentations for these and other areas covered in the rest of the CHy-15 session are available on the dedicated CHy-15 website.

Overall, there were representative of 52 WMO member states at CHy-15, along with lecturers, invited experts and observers from 11 international organisations and other bodies such as ECMWF, ESA, HMEI and the World Bank.

The CHy-15 session was livestreamed on the ISPRA YouTube channel and videos from the session are available online.

Group photo of the 15th session of the Commission for Hydrology (CHy) of the World Meteorological Organisation (WMO) held in Rome from 7th to 13th December 2016 (photo: A. Castellucci, Ispra – CHy/WMO)

Additional links:

[1] Askew A, ‘Hydrology and Water Resources within WMO—the Birth of a Programme’, WMO Bulletin Vol 57 (3) – 2008.

[2] Integrated Flood Analysis System of ICHARM

Posted in activities, meetings | Leave a comment

An invitation: help HEPEX program apps to teach the value of probabilistic forecasts

Contributed by Florian Pappenberger, Andy Wood, Maria-Helena Ramos, Schalk-Jan van Andel, Louise Crochemore, and Louise Arnal

This is a blog for people who usually do not read this blog. This is a blog which asks for help so that our learning and teaching games and tools become more useful and widespread. This is a blog hoping that we can find some enthusiastic volunteers.

The more people know how to use probabilistic forecasts, the better their decisions and the lower the impact caused by extreme weather or hydrology (floods, droughts etc) will be.

Weather, water and fire (and many others) forecasts are uncertain — people instinctively know this. For example, if I forecast a maximum of 15 degrees Celsius for tomorrow, you probably know it will not be exactly 15 degrees Celsius but something around that number (and you may add an uncertainty range from your experience).

Most weather and water forecast centres also understand this and produce not just a single forecast but a set of forecasts. For instance, the Global Flood Awareness System generates 51 scenarios (51 different forecasts) of what the future could look like. This enables it to issue a probabilistic forecast, which means (for the above example) that you can estimate a certain percentage chance of the temperature being above or below 15 degrees Celsius.

Despite this uncertainty, people still need to take decisions. An example of a simple decision is whether or not to take an umbrella when you leave the house. A more complex one may be whether you should stop the London Underground because of a risk of flooding along the Thames.

Probabilistic forecasts enable better decisions because you know what the uncertainties are, whereas you have no clue of them with a single forecast.

Forecast users can strengthen their understanding of the value of probabilistic forecasts, and their skills in using them, through forecasting games. There are many examples:

  • controlling a reservoir on a river to avoid droughts (here),
  • exploring the economic value of uncertain forecasts (here),
  • managing floods (here),
  • weather roulette (here) which evaluates the information in forecasts.

HEPEX has designed and implemented a number of such games (see here), but, to date, except for our first try on the online version of the “Pay for a forecast” game (here), they are paper- or presentation- based, and we would like them to reach a wider audience.

The challenge today is:

  1. Can you improve the existing ideas?
  2. Could you design a game where different players compete against each other? (*)
  3. Most importantly, can you transform the paper-based version into apps (web or phone) to reach a wider audience?

We are also interested in putting together ideas on how to set up a project (volunteer, student, commercial), which kind of partners, and how to get funding (volunteer-based, crowd-funding, H2020 and the like, commercially, etc) to enhance our tools for training and teaching the value of probabilistic forecasts.

Please contact us or any of the HEPEX co-chairs by Friday 28th April if you could contribute to engineering web-apps in support of the HEPEX initiative or of you are interested in participating to project proposals on the topic.

You can also come and meet us at the EGU poster session of the ensemble session in Vienna. Our HEPEX poster, will be displayed on Friday, 28th April, and the attendance time is from 17:30–19:00 in Hall A.

(*) In the Weather Roulette game, for instance, you would need to decide whether the app decides the odds for different outcomes. The goal of each player is to win the most in the weather roulette casino shared by everyone. Alternatively, players could each have their own casino and bet in the casinos of other players. Examples of the questions a designer would face include: On what forecasts should the odds be based? And what information is made available to the players so that they can decide how much to bet on different outcomes?

Posted in activities, projects | Leave a comment

Competition: How would you explain your work if you knew only 200 simple words?

Contributed by Louise Arnal, Rebecca Emerton, Liz Stephens, Hannah Cloke

It is not always easy to explain what you work on, especially when you have to avoid using jargon specific to your field. Yet, this is something that we almost all have to do from time to time. It is important to be able to explain your research simply in order to communicate effectively with scientists in other fields and, for example, businesses, policy makers and the public.

So we thought we’d have some fun with this and run a competition designed to really test how simply you can explain a common theme of all of our work: “Ensemble hydrological forecasting”.

Here is your challenge: using only the 200 most commonly used words of the English dictionary (listed below), you will have to explain what “Ensemble hydrological forecasting” is.

To help you out a little bit, you’re also allowed the use of the word “water”. You can make words plural and use punctuation, but you cannot conjugate verbs. You can write as much or as little as you need to explain the concept.

An ECMWF surprise prize is waiting for the winner

Submit your answer in the comment box below, starting the sentence with “Ensemble hydrological forecasting is…”.

The competition will be open until 21 March 2017, after which we will put the answers to a vote to choose a winner, who will receive a prize from the team at ECMWF.

Below is a list of words that you are allowed to use, in alphabetical order. In the first comment to this post, you will find an example if you’re struggling to get started.

Good luck!

These are the words you can use:

Posted in activities | 24 Comments