Challenges of adoption of probabilistic hydro-meteorological forecasts for reservoir operations.

NATHALIE VOISIN, MARK WIGMOSTA, RICK SKAGGS, ANDRE COLEMAN, CINDY RAKOWSKI
Pacific Northwest National Laboratory, Richland, WA
HEPEX workshop, June 25 2014, College Park MD
How many reservoirs could benefit from ensemble hydro-meteorological forecasts, i.e. risk based approach?
8121 Majors Reservoirs in the conterminous US

Irrigation
Flood Control
Water Supply
Hydropower
Recreation
Other
80% of all reservoirs have high to significant hazard

Relatively, multi objective reservoirs have higher hazard than single objective reservoirs

“potential hazard to the downstream area resulting from failure or mis-operation of the dam or facilities.”

High: loss of human lives
Significant: economic loss, environmental damage, structures
Low: limited to owner property, low economic and environmental loss
How many reservoirs could benefit from added value of ensemble flow forecast and risk-based information?

All. **Higher challenge of adoption for reservoirs with significant to high hazard:**

→ 2201 single objective reservoirs with high to significant hazard
 - might be more open to adopt risk based operations.
 - most of the applications so far
 - represent only 10-30% of total storage managed for different purposes

→ 467 multi objective reservoirs with high to significant hazard.
 - Less of them but bigger storage.
 - higher hazard than single objective
 - What are those reservoirs?
50% of reservoirs operated for hydropower are multi objective

Irrigation, supply and flood control: >= 90% are single-objective reservoirs

- Irrigation in the West
- Flood control in the East
- Water supply and hydropower across the US
Adoption of Innovation in a multi-objective operating system

the

US Department of Energy
Water Use Optimization Toolset (WUOT)
Water Use Optimization Toolset

- Challenge: How to operate conventional hydropower plants in an increasingly uncertain and competitive water-constrained environment
 - increasingly complex electricity markets
 - environmental constraints
 - water supply restrictions

- Objective of the toolset: to link water supply, power generation, ancillary services and environmental performance for planning and operations that:
 - increases energy and grid services from available water
 - enhances environmental benefits from improved hydropower operations and planning.
4 demonstration basins:

Aspinal Unit (Gunnison R., Colorado),

Oroville – Thermalito (Feather R., California),

Conowingo (Susquehanna, North East),

Seattle City Light (North Cascades)
Seasonal Hydroclimatic Forecasts as Innovations and the Challenges of Adoption by Water Managers (Whateley, Palmer and Brown, J. Wat. Res. Plan. Mgnt, 2014)
Seasonal Hydroclimatic Forecasts as Innovations and the Challenges of Adoption by Water Managers (Whateley, Palmer and Brown, J. Wat. Res. Plan. Mgnt, 2014)

Figure 10. Characteristics of Innovation: understanding the influence of Rogers' five innovation attributes on adoption.
Challenge of Innovation in a multi-objective integrated system

- Complexity: High, but user interface

- Compatibility: possibly limited with existing operational system, but toolset ensures compatibility across multi scales and between objectives and new policies

- Triability: independent system, can be run in parallel with existing system

- Relative Advantage: based on hindcast, need business sensitive data from partners over a representative period

- Observability: multi scale and multi objective approach is meant to bring high observability between multiple stakeholders.
Focus on the hydro-meteorological forecast tool

Observations: SWE, river flow, NLDAS precip, temperature, wind

Data assimilation, particle filter

Weather Forecasts GEFS, ESP

Pre-processor: Calibration and merging

 Ensemble flow forecasts

Hydrology model

Ensemble flow forecasts

Post processor

Ensemble NATURAL flow forecasts

Forecaster role

Flow Forecast verification

Ensemble met forecasts

Users
Challenge of innovation for individual tools:
Hydro-forecasting system

- Complexity: High but use own database for upload

- Compatibility: Very high – customized for all locations and forecast products required by other tools.

- Triability: operated by third party.

- Relative Advantage: based on hindcast, ensemble forecast verification. But ultimately, is through the toolset.

- Observability: multi scale and multi objective approach is meant to bring high observability between multiple stakeholders. See T. Veselka and T. Lowry’s presentations.

Compatibility

Relative Advantage

Observability

Triability

Need integrated system to fully evaluate and facilitate adoption
Status of ensemble hydro-meteorological forecast systems for single objective systems

How close are we to generalize adoption of ensemble forecasts operationally?

- **Relative Advantage**: High
- **Complexity**: Expected but ease-of-use, access AND understanding
 - Facilitate in interpretation of probabilistic forecast information
- **Compatibility**: High
 - Tailor forecasts to meet operational needs of water management agency
- **Trialability**: Medium
 - Improve flexibility and tolerance of ‘trying’ forecast information, minimizing consequences
- **Observability**
 - Management of risk among one operator communication with responsible agencies
 - Increase communication among stakeholders and management agencies

Illustrate improvements to reservoir operating policies
Status of ensemble hydro-meteorological forecast systems for multi-objective systems

How close are we to generalize adoption of ensemble forecasts operationally?

Relative Advantage
- Need more applications
- Expected but ease-of-use, access AND understanding

Complexity
- Observability
- Management of risk among stakeholders - multi-objective
- Need more application & research

Compatibility
- High

Trialability
- Medium

Need more work

Increase communication among stakeholders and management agencies

Illustrate improvements to reservoir operating policies

Facilitate in interpretation of probabilistic forecasts, water management

Tailor forecasts to meet operational needs of water agencies

Improve flexibility and tolerance of trying, forecast, minimal consequences

Need more application & research
Conclusion

Science Implementation Plan:
Transition toward multi objective applications and end users
- Decision support system
- Across temporal and spatial scales
- Develop a standard approach for the adoption of innovation in order to address end-user challenges and direct research efforts: observability and relative advantage.
Thank you

- Contact: Nathalie.voisin@pnnl.gov
- Supported by the Department of Energy Waterpower Program, Water Use Optimization Toolset.