To provide continuous flash flood situational awareness and to better differentiate severity of ongoing individual precipitation events, the National Weather Service Research Distributed Hydrologic Model (RDHM) is being implemented over Hawaii. In the implementation process of RDHM, three gridded precipitation analyses are used as forcing. The first analysis is a radar only precipitation estimate derived from WSR-88D digital hydrometeor reflectivity, a tropical Z-R relationship and aggregated into an hourly ¼ HRAP grid. The second analysis is derived from a rain gauge network and interpolated into an hourly ½ HRAP grid using PRISM climateology. The third analysis is derived from rain gauge network where rain gauges are assigned static predetermined weights to derive a uniform mean areal precipitation that is applied over a catchment on a ¼ HRAP grid. To assess the effect of different QPE analyses on the accuracy of RDHM simulations and to potentially identify a preferred analysis for operational use, each QPE was used to force RDHM to simulate stream flow for 18 USGS peak flow events. An evaluation of the RDHM simulations was focused on peak flow magnitude, peak flow timing, and event volume accuracy to be most relevant for operational use. Results showed RDHM simulations based on the observed rain gauge amounts were more accurate in simulating peak flow magnitude and event volume relative to the radar derived analysis. This result was not consistent for all 18 events nor was it consistent for a few of the rainfall events where an annual peak flow was recorded at more than one gauge. Implications of this may indicate that a more robust QPE forcing with uncertainty derived from the three analyses would provide a better input for providing operational peak flow events.

Operational Paradigm: Uncertainty in Quantitative Precipitation Estimates

Context: QPE use in hydrologic simulations of annual peak flow events

David Strebel - National Weather Service Alaska Pacific River Forecast Center
Kevin Kodama - National Weather Service Honolulu Weather Forecast Office

Abstract

To provide continuous flash flood situational awareness and to better differentiate severity of ongoing individual precipitation events, the National Weather Service Research Distributed Hydrologic Model (RDHM) is being implemented over Hawaii. In the implementation process of RDHM, three gridded precipitation analyses are used as forcing. The first analysis is a radar only precipitation estimate derived from WSR-88D digital hydrometeor reflectivity, a tropical Z-R relationship and aggregated into an hourly ¼ HRAP grid. The second analysis is derived from a rain gauge network and interpolated into an hourly ½ HRAP grid using PRISM climateology. The third analysis is derived from rain gauge network where rain gauges are assigned static predetermined weights to derive a uniform mean areal precipitation that is applied over a catchment on a ¼ HRAP grid. To assess the effect of different QPE analyses on the accuracy of RDHM simulations and to potentially identify a preferred analysis for operational use, each QPE was used to force RDHM to simulate stream flow for 18 USGS peak flow events. An evaluation of the RDHM simulations was focused on peak flow magnitude, peak flow timing, and event volume accuracy to be most relevant for operational use. Results showed RDHM simulations based on the observed rain gauge amounts were more accurate in simulating peak flow magnitude and event volume relative to the radar derived analysis. This result was not consistent for all 18 events nor was it consistent for a few of the rainfall events where an annual peak flow was recorded at more than one gauge. Implications of this may indicate that a more robust QPE forcing with uncertainty derived from the three analyses would provide a better input for providing operational peak flow events.

Operational Background

Honolulu Weather Forecast Office
- Provides Flash Flood Warnings for Hawaii
- Averages 16 flash flood events a year for the entire state, 1-2 of these may become significant high impact events
- Warnings products need to be issued prior to or during rising levels of hydrograph to be relevant and can contain impact severity information.
- A measure of credibility or uncertainty needs to be available to provide confidence and information for reliable flood products

Alaska Pacific River Center
- Supports Honolulu Weather Forecast office by assisting in implementing models and tools to provide flood situation awareness and forecast capabilities.
- To be relevant, measures of model performance and or uncertainty needs to be established prior to operational implementation.

Project

- Implement HL-RDHMTM hydrologic model with focus on annual peak flow simulations at USGS gages
- Assess model simulation performance for complex terrain relative to three different operational gridded precipitation estimates used by NWS.
- Determine optimal operational QPE analysis based on simulation performance or make steps to derive operational procedure to incorporate more than one QPE analysis if results indicate value
- Derive general conclusions on the effect of QPE analysis uncertainty for RDHM simulations of USGS peak flow events. If possible incorporate QPE uncertainty into future operational use of RDHM during extreme precipitation events.

Methodology

- HL-RDHMTM implemented using a priori parameters in basins with USGS gages on Kauai and Oahu. Evaluation focused on four basins
 - Hanalei River; Basin Area 18.5 m
 - Sf Waikoa River; Basin Area 23.7 m
 - Waikiele Stream; Basin Area 45.1 m
 - Manoa Stream; Basin Area 5.8 m
- Gridded 1hr QPE derived from 2000-2011 for island of Kauai and Oahu using three different approaches
 - Mountain MapperTM: A precipitation gauge analysis using PRISM interpolation aggregated to ~1km grid mesh
 - DHR(P)E: Analysis: WSR-88D digital hydrometeor reflectivity product is used with tropical Z-R equation to generate a gridded precipitation estimate at a ~1km mesh
 - Pre-determined weights: uniform catchment precipitation estimate is derived from annual water balance using USGS stream flow runoff data, estimate of ET, and rain gauge data

- To be relevant, NWS operations accuracy of HL-RDHMTM simulation with respect to each QPE forcing was assessed with focus on peak flow magnitude, timing and event volume.
- To try and determine which QPE may be preferred for operational use and to get better understanding of how consistent RDHM simulation per formed relative to QPE source, 16 peak flow events were simulated for 4 USGS gages and results were ranked relative to one another.

Conclusions & Future Considerations

- Rain gauge based analyses generally had less bias in the magnitude of the peak flow event and event volume for the 16 peak flow events than the radar based analysis. The result was not consistent for every event and to each basin. For peak flow timing, no analysis appeared to consistently outperform the others.
- Operational skill of RDHM to accurately identify and simulate extreme events will likely be lower if only one operational QPE analysis is used. This needs to be considered over bigger NWS operational scales and in context to efforts to create an “optimum” operational QPE.
- The “optimum” gridded QPE analysis for peak flow event simulations should contain uncertainty and potentially a tool to derive and include an ensemble of QPE to create more realistic hydrologic model states and better represent simulation uncertainty.

Tables shows relative ranked results of event simulations forced with each QPE analysis. For peak flow and event volume smaller rank is given to analysis that simulated closest to USGS observed peak hour. Table 1: Peak Flow Rank Table 2: Peak Flow Timing Rank Table 3: Event Volume Rank

References