Evaluation of a multi-model seasonal hydrological forecast prototype for the spring flood period in Sweden

By: Kean Foster,
Co-authors: Cintia Uvo, Jonas Olsson, Wei Yang, Johan Södling, Tomas Bosshard and Peter Berg
Hydropower was the driving force
Background - Hydropower in Sweden

- Sweden is the biggest hydropower producer in the EU and the 10th biggest worldwide (IEA 2012)

- **Hydroelectric capacity**: 16 781 MW
 - % of total installed capacity: 42.79%
 - % of total renewable capacity: 67.81%

- **Annual production (last 10 years)**: 73 TWh
 - approx. 45% of the country’s total consumed electricity
IHMS – Integrated Hydrological Monitoring System
Climatological ensemble:

Historical time series

The Ångerman River

The hydropower system of the river Ångermanälven
Climatologic ensemble: Limitations

- Climatologic ensemble → Seasonal forecast evolution follows the climatology of the driving data

- No notable improvement in performance over the last 25 years

Arheimer et al. 2010
Schematic of the Multi-model prototype

Climatological ensemble

Analogue ensemble

S2D ensemble

Snow data

Hydrological model

Weighted Multi-model

Statistical model

Hydrologic seasonal forecast
Reduced ensemble:

Historical time series

HBV

Forecast
Reduced ensemble: TCI method

- Teleconnection Climate Indices
 - NAO
 - AO
 - SCAND

- Select all years with comparable TCI combinations

- Run HBV with reduced ensemble

Analogue years → HBV → Spring flood volume forecast Maj-Jun-Jul
Seasonal NWP based forecast:

NWP

~100 km

HBV

Forecast
ECMWF forecasts in HBV: method

- ECMWF seasonal forecasts
 - 51 ensemble members
 - Daily P and T → Bias correction and remapping to HBV grid format
- Run HBV with ECMWF ensemble

ECMWF ensemble P och T ➔ HBV ➔ Spring flood volume forecast Maj-Jun-Jul
Statistical downscaling:

NWP

SVD

~100 km

Forecast
Statistical downscaling: method

- Atmospheric variables predictors from NWP (ECMWF)
 - Pressure field variables
 - Temperature/radiation variables
 - Moisture variables
- Observed Seasonal discharge volumes

In December
GCM forecast
Jan-Feb-Mar

\[\text{SVD} \]

Forecast
spring flood volume
May-Jun-Jul
Multi-model Forecast example:
Multi-model Forecast example:
Multi-Model Forecast example:
Multi-Model Forecast validation stats:
Multi-Model Forecast validation stats:

![Graph showing RMSE as % of Obs and Relative Improvement](image)
Multi-model Forecast example:

[Spaghetti graph showing accumulated volume and inflow over time]
Multi-Model Forecast example:
Forecast example: Initialised 1 Jan
Conclusions

- Climatological spring flood forecasts are difficult to beat.
- For single basins and forecast dates, a reduction of the forecast error by up to 30%.
- The Multi-model shows more skill at forecasting anomalies and is able to reduce the forecasted volume error by 10% points on average.