Towards timelier, sub-seasonal to seasonal streamflow forecasts in Australia to better meet user needs

2016 HEPEX Workshop
Andrew Schepen, Tony Zhao and QJ Wang
8 June 2016
Seasonal streamflow forecasting in Australia

Seasonal streamflow forecasting in Australia

Upgrading the service to better meet user needs

- Sub-seasonal forecasts
 - Forecast in the first month
 - Monthly breakdown
- Timelier forecast release
 - Forecasts currently released at least 7 days late
The Bayesian joint probability (BJP) modelling approach

• Catchment + climate predictors → Streamflow predictands

• Issues
 • Heteroscedasticity
 • Zero value
 • Data

• The BJP solution
 • Transformations
 • Censored data
 • A joint probability model, with Bayesian inference
The BJP approach can be used to produce sub-seasonal and timelier forecasts

- 23 catchments
- Leave-five-years-out cross-validation
- 1982-2011
Sub-seasonal to seasonal forecasts

• We can take advantage of BJP to:
 • Jointly forecast several months ahead
 • Obtain ensemble time series output
• Monthly forecasts can be accumulated to seasonal totals
Skill of sub-seasonal to seasonal forecasts

Monthly skill

Seasonal skill
Current forecast release process

- Current BJP models rely on delayed monthly data sets
- 0-month lead time forecasts

Current forecast release process diagram

- **Check data streams**
 - D-2
 - D0
 - **Start of forecast period**
- **Gather predictor data QC**
 - D0
- **Generate forecasts**
 - D+5
- **Develop communications / website**
 - D+7
- **Release**
How to release timelier forecasts?

• Allow for N-day lead forecasts
• Establish predictors using 28-day sliding windows
• Derive streamflow and climate predictors from daily data
Reliability of timelier forecasts

Reliability with lead time
Skill of timelier forecasts

0-days lead time

7-days lead time
Skill of timelier forecasts

Change in CRPS skill score as lead time increases

![Box plot showing the change in CRPS skill score as lead time increases. The x-axis represents lead time in days (1 to 21), and the y-axis represents CRPS skill score difference. The plot indicates that the skillful cases show a decrease in CRPS skill score as lead time increases.]
What is the optimal forecast lead time?

• The forecast release schedule should allow for:
 • Forecast preparation
 • Communication
 • User comprehension and use
• The N-days lead time system will allow flexibility
Conclusion

• The BJP model is robust for producing sub-seasonal forecasts
 • Ensemble time series forecasts
 • Seasonal forecasts through accumulations

• Timelier forecasts are possible
 • Use only daily streamflow and SST
 • Reliability is maintained
 • Small-moderate reductions in skill over 1-2 weeks

• Likely to transfer to operations through 2017
Thank you

Land and Water
Andrew Schepen
Hydro-climate modeller

t +61 7 3833 5513
e Andrew.Schepen@csiro.au